Colour vision: From sensation to science (in Norwegian)


  • Arne Valberg Division for Biophysics and Medical Technology, Norwegian University of Science and Technology, 7491 Trondheim, Norway



Fargesyn, opponentteori, fire-fargeteori, tre-fargeteori, tre-reseptorteori, nevrovitenskap


Throughout history there have been different approaches to pursuing a better understanding of colour and colour vision, depending on the phenomena one wanted to explain. For instance, although seemingly irreconcilable, the opponent-colour theory of Hering (with its yellow-blue and red-green chromatic pairs) and the three-colour theory of Young-Helmholtz (with red, green, and violet as mixture primaries) did in fact illuminate different aspects of colour vision. Thomas Young and Hermann von Helmholtz set out to explain the qualities of colours, but with the help of James C. Maxwell this theory eventually became a three-receptor theory describing additive colour mixtures and colour matches. The three-receptor theory is the foundation of trichromatic colour measurements and a thriving colour technology. Ewald Hering, who also had colour perception as his main concern, appears to have recognized the distinction between receptor excitations and perception. He postulated opponent physiological processes as basis for the two pairs of chromatic colours. Today these theories are combined in an attempt to understand how colour is processed in the higher brain centres.


Brindley, G. S. (1960). Physiology of the Retina and the Visual Pathway. Edward Arnold, London.

Carroll, J., Neitz, M., Hofer, H., Neitz, J. & Williams, D. R. (2004). Functional photoreceptor loss revealed with adaptive optics: An alternate cause of color blindness. Proceedings National Academy of Sciences of the USA, 101, 8461-8466. doi:10.1073/pnas.0401440101

Conway, B.R. (2009). Color vision, cones, and color-coding in the cortex. The Neuroscientist 15, 274-290. doi:10.1177/1073858408331369

Dacey, M. D. & Lee B B. (1994). The blue-ON opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature, 367, 731-735. doi:10.1038/367731a0 Letter

Dacey, M. D. & Packer, O. S. (2003). Color coding in the primate retina: diverse cell types and cone-specific circuitry. Current Opinion in Neurobiology, 13, 421-427. doi:10.1016/S0959-4388(03)00103-X

Da Vinci, L. (1906). A Treatise on Painting. Engelsk oversettelse av Rigaud, J. F. & Bell, G. London. New edition by Hetzfeldt, M., 1925.

De Valois, R. (1965). Analysis and coding of color vision in the primate visual system Cold Spring Harbour Symposia on Quantitative Biology, 30, 567-579.

Gegenfurtner, K.R & Kiper, D.C. (2003). Color vision. Annual Review of Neuroscience, 26, 181-206. doi:10.1146/annurev.neuro.26.041002.131116

Grassmann, H. (1853). Zur Theorie der Farbmischung. Poggendorffs Annalen Physik, 89, 69-84.

Helmholtz, H. von (1911). Handbuch der Physiologischen Optik, Vol. 2, 3rd edition. Hamburg: Voss. Denne utgaven av Vol.2 er basert på den opprinnelige fra 1860.

Hering, E. (1920). Grundzüge der Lehre vom Lichtsinn. Berlin: Springer.

Hering, E. (1964/1920). Outlines of a Theory of the Light Sense. Translated from German by L. M. Hurvich and D. Jameson. Cambridge, Mass.: Harvard University Press.

Hofer, H., Singer, B. & Williams, D.R. (2005). Different sensations from cones with the same photopigment. Journal of Vision, 5, 444-454. doi:10.1167/5.5.5

Howard, I.P. (1999). The Helmholtz-Hering debate in retrospect. Perception 28, 543-549. doi: 10.1068/p2805ed

Hurvich, L. M. & Jameson, D. (1955). Some quantitative aspects of opponent-colors theory. II. Brightness, saturation and hue in normal and dichromatic vision. Journal of the Optical Society of America, 45, 602-616.

Hurvich, L. M. (1981). Color Vision. Sunderland, MA: Sinauer.

Judd, D. B. (1960). Appraisal of Land’s work on two-primary color perceptions. Journal of the Optical Society of America, 50, 254-268.

Judd, D. B. (1951). Handbook of Experimental Psychology. Redigert av S. S. Stevens. pp. 811-867. New York: Wiley/Chapman and Hall.

Kaiser, P. K. & Boynton, R. M. (1996). Human Color Vision (2nd edition), Optical Society of America, Washington D.C.

Komatsu, H. (1997). Neural representation of color in the inferior temporal corex of the macaque monkey. In The Associative Cortex – Structure and Function (ed. H. Sakata, A. Mikami, J. Fuster). Amsterdam: Harwood Acad.

Land, E. H. (1959). Color vision and the natural image. Part I and II. Proceedings of the National Academy of Sciences of the USA, 45, 115-129 and 636-644.

Land, E. H. (1983). Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image. Proceedings of the National Academy of Sciences of the USA, 80, 5163-5169.

Lee, B. B., Valberg, A., Tigwell D. A. & Tryti, J. (1987). An account of responses of spectrally opponent neurones in macaque lateral geniculate nucleus to successive contras. Proceedings of the Royal Society of London, Series B, 230, 293-314.

Lee, B. B., Martin, P. R. & Valberg, A. (1988). The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina. Journal of Physiology, 404, 323-347.

Lee, B. B. (1991). Die Universität Göttingen und die Entstehung der Farbenlehre. MPG Spiegel 3(91), 11-15.

Le Grand, Y. (1968). Light, Colour and Vision. Chapman and Hall, p.430.

Livingstone, M. S. & Hubel, D. H. (1984). Anatomy and physiology of a color system in the primate visual cortex. Journal of Neuroscience, 4, 309-356.

Mancuso, K., Hauswirth, W.W., Li, Q., Connor, T. B., Kuchenbecker, J. A.,

Mauck, M. C., Neitz, J. & Neitz, M. (2009). Gene therapy for red-green colour blindness in adult primates. Nature, 461, 784-288. doi:10.1038/nature08401 Letter

Martin, P. R., White, A. J. R., Goodchild A. K., Wilder, H. D. & Sefton, A. E. (1997). Evidence that the blue-on cells are part of the third geniculocortical pathway in primates. European Journal of Neuroscience, 9, 1536-1541. doi:10.1111/j.1460-9568.1997.tb01509.x

Maxwell, J. C. (1970/1856). Theory of the perception of colours. Transactions of the Royal Scottish Society of Arts, 4, 394-400, 1872. Trykt i D. L. MacAdam (red.) Sources of Colour Science, pp. 63-64. Cambridge, MA: MIT Press.

Maxwell, J. C. (1970/1872). Theory of the perception of colours. Transactions of the Royal Scottish Society of Arts, 4, 394-400, 1872. Trykt i D. L. MacAdam (red.) Sources of Colour Science, pp. 75-83. Cambridge, MA: MIT Press.

Miescher, K., Hofman, K.-D., Weisenhorn, P. & M. Früh (1961). Ueber das natürliche Farbsystem, Die Farbe, 10, 115-144.

Mollon, J. D. (1995). George Palmer (1740-1795): glass-seller, visual theorist and draper. In The Theory of Colours and Vision. London: Drapers Hall.

Müller, G. E. (1930). Ueber die Farbempfindungen. Psychophysische Untersuchungen. Leipzig: Barth.

Newton, I (1979/1704). Optics. New York: Dover. (First published in 1704).

Schrödinger, E. (1925). Ueber das Verhältnis der Vierfarben- zur Dreifarbentheorie. Sitzungsberichte der Akademie der Wissenschaften, Wien IIa (134), 471-490.

Sincich, L. C., Jocson, C. M. & Horton, J. C. (2007). Neurons in V1 patch columns project to V2 thin stripes. Cerebral Cortex, 17, 935-941. doi:10.1093/cercor/bh1004

Solomon, S. G. & Lennie, P. (2007). The machinery of colour vision. Nature Reviews Neuroscience, 8, 276-286. doi:10.1038/nrn2094

Stockman, A & Sharpe, L.T. (2000). The spectral sensitivities of the middleand long-wavelength sensitive cones derived from measurements in observers of known genotype. Vision Research 40, 1711-1737.

Tailby, C., Solomon, S.G. & Lennie, P. (2008). Functional asymmetries in visual pathways carrying S-cone signals in macaque. Journal of Neuroscience, 28, 4078-4087. doi:10.1523/JNEUROSCI.0267-08.2008

Trendelenburg, W. (1943). Der Gesichtssinn. Berlin: Springer

Valberg, A., Seim, T.,.Lee, B. B. & Tryti, J. (1986a). Reconstruction of equidistant color space from responses of visual neurons of macaques. Journal of the Optical Society of America A, 3, 1726-1734.

Valberg, A., Lee, B. B. & Tigwell, D. A. (1986b). Neurones with strong inhibitory S-cone inputs in the macaque lateral geniculate nucleus. Vision Research, 26, 1061-1064.

Valberg, A. (2001). Unique hues: An old problem for a new generation. Vision Research, 41, 1645-1657.

Valberg, A. (2005). Light Vision Color. Chichester: Wiley & Sons.

Valberg, A. & Seim, T. (2008). Neural mechanisms of chromatic and achromatic vision, Color Research and Application, 33, 433-443. doi:10.1002/col.20445

Von Kries, J. (1905). Die Gesichtsempfindungen. Handbuch der Physiologie des Menschen. (W. Nagel red.; pp. 109-282). Braunschweig: F. Vieweg und Sohn.

Wachtler, T., Sejnowski, T.J. & Albright, T.D. (2003). Representation of color stimuli in awake macaque primary visual cortex. Neuron, 37, 681-691. doi:10.1016/S0896-6273(03)00035-7

Young, T. (1802). On the theory of light and colours. The Bakerian lecture. Philosophical Transactions of the Royal Society of London *92*, 12-48.

Xiao, Y., Wang, Y.I. & Fellman, D.J. (2003). A Spatially organized representation of colour inmacaque cortical area V2. Nature, 421, 535-539. doi:10.1038/nature01372 Letter

Wiesel, T. N. & Hubel, D. H. (1966). Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. Journal of Neuroscience, 29, 1115-1156.

Zeki, S. (1983). The distribution of wavelength and orientation selective cells in different areas of the monkey visual cortex. Proceedings of the Royal Society of London, Series B. 217, 449-470.


How to Cite

Valberg, A. (2010). Colour vision: From sensation to science (in Norwegian). Scandinavian Journal of Optometry and Visual Science, 3(1), s. 1–6.



Review Article